Таблична модель поведінки клієнта страхової компанії
Припущення
Клієнт страхової компанії є власником певного активу (майно, внесок у банк, людський капітал), величина якого відображається у грошовій формі. Величину активу будемо позначати через А.
Можливий страховий випадок, коли клієнт втрачає актив або його частку. Це може бути у випадку стихійного лиха, пограбування, банкрутства фінансової установи, якій клієнт довірив свій актив, несприятливої конюнктури ринку (чорні вівторки та пятниці), втрати працездатності внаслідок виробничої або побутової травми. Будемо розглядати спрощений випадок, коли актив або повністю недоторканий, або повністю вилучений.
Припускаємо, що клієнт може оцінити імовірність страхового випадку. Позначатимемо її через .
Для того, щоб бути більш певним у своєму майбутньому, власник активу може звернутись до страхової компанії і застрахувати актив або його частку.
Компанія пропонує такі умови страхування:
1. клієнт сплачує компанії страховий внесок, пропорційний частці страхового активу. Позначимо через питомий страховий внесок або ціну страхування, тобто страховий внесок, що припадає на одиницю страхового активу;
2. якщо трапляється страховий випадок, компанія сплачує клієнту страхову винагороду, яка теж пропорційна частці застрахованого активу. Через будемо позначати питому страхову винагороду, тобто страхову винагороду, що припадає на одиницю страхованого активу.
Аналіз взаємодії страхової компанії та її клієнтів буде здійснений за таких припущень щодо їх поведінки:
І. Клієнт залежно від питомого страхового внеску та питомої страхової винагороди обирає частку страхового активу;
ІІ. Клієнт є несхильним до ризику, тобто для нього більш привабливим є отримання гарантованого сподіваного виграшу, ніж участь у ризикованій акції, яка має такий самий сподіваний ефект. Припущення можна перефразувати в більш звичайних термінах для страхової справи. Наприклад, власник будинку вартістю 400 000 гривень може його втратити внаслідок стихійного лиха, імовірність якого становить 0,0001 на рік. Сподіваний програш становить у цьому випадку 400 000 х 0,0001 = 40. Проте власник будинку залюбки буде сплачувати 100, а то й 200 гривень щороку страховій компанії, аби вона йому гарантувала відшкодування вартості будинку.
ІІІ. Моделлю системи цінностей людини, яка не байдужа до ризику, є сподівана корисність. Чим більша сподівана корисність для людини, тим більш комфортно вона себе почуває.
ІV. Також будемо припускати, що функція корисності за Нейманом-Моргенштерном клієнта є монотонно зростаючою, тобто чим більший актив має особа, тим краще для неї.
Числовий приклад.
Величина активу становить 20 000 гривень. Власник активу - особа несхильна до ризику. Гранична корисність для власника активу задається формулою:
(1)
де інтервали зміни величини активу вказані в тисячах.
Імовірність страхового випадку =0,0001. Питомий страховий платіж (надалі будемо називати його просто страховим платежем) =0,001, питома страхова винагорода =1. Іншими словами, кожна застрахована 1 000 відшкодовується повністю у разі страхового випадку, але для цього клієнт повинен сплатити компанії 1 гривню.
Чи буде власник активу страхуватись взагалі, але якщо буде то яким обсягом?
Насамперед кілька зауважень щодо системи цінностей потенційного клієнта. Найбільш вагомою для нього буде втрата останніх одиниць його активу (кожна одиниця серед останніх пяти важить 20 ютилів). Далі вагомість втрат зменшується. В таблиці 1 наведена корисність багатства потенційного клієнта.
Табл.1. Корисність залишку активу після страхового випадку (згідно з граничною корисністю(1)) |
Табл.2. Обсяг страхування та сподівана корисність (=0,0001, =0,001 ) |
|||||
Величина активу (х) (в тис.) |
Гранична корисність (МU) |
Корисність (u(x)) |
Обсяг страхування |
Сподівана корисність |
||
0 |
20 |
0 |
0 |
179,9820 |
||
1 |
20 |
20 |
1 |
179,9830 |
||
2 |
20 |
40 |
2 |
179,9840 |
||
3 |
20 |
60 |
3 |
179,9850 |
||
4 |
20 |
80 |
4 |
179,9860 |
||
5 |
20 |
100 |
5 |
179,9870 |
||
6 |
10 |
110 |
6 |
179,9870 |
||
7 |
10 |
120 |
7 |
179,9870 |
||
8 |
10 |
130 |
8 |
179,9870 |
||
9 |
10 |
140 |
9 |
179,9870 |
||
10 |
10 |
150 |
10 |
179,9870 |
||
11 |
5 |
155 |
11 |
179,9865 |
||
12 |
5 |
160 |
12 |
179,9860 |
||
13 |
5 |
165 |
13 |
179,9855 |
||
14 |
5 |
170 |
14 |
179,9850 |
||
15 |
5 |
175 |
15 |
179,9845 |
||
16 |
1 |
176 |
16 |
179,9836 |
||
17 |
1 |
177 |
17 |
179,9827 |
||
18 |
1 |
178 |
18 |
179,9818 |
||
19 |
1 |
179 |
19 |
179,9809 |
||
20 |
1 |
180 |
20 |
179,9800 |
Очевидно, що функція корисності клієнта є увігнутою, тобто він не схильний до ризику. Для нього найбільш вагомими є останні одиниці втрати активу після страхового випадку.
Порівняємо добробут клієнта за відсутності страхування та у випадку, коли він страхує перші одиниці активу.
Якщо клієнт не страхується зовсім, то він матиме, як і раніше, актив обсягом 20 000 за відсутності страхового випадку, та нічого, якщо страховий випадок трапиться. З точки зору корисності, він матиме 180 ютилів (див. табл.1) з імовірністю 0,9999 та нічого з імовірністю 0,0001. Сподівана корисність становитиме:
0,9999 х 180 + 0,0001 х 0 = 179,982.
Якщо клієнт страхує 4 000, то у разі відсутності страхового випадку то у нього залишається:
20 000 - 4 000 х 0,001 = 19,996,
а в разі страхового випадку - 4 000 гривень, корисність першої суми згідно з табл.1., становитиме 179,996, другої - 80. Звідси, сподівана корисність дорівнюватиме
179,996 х 0,9999 + 80 х 0,0001 = 179,986.
Таким чином, для особи з функцією корисності, яка відображена в таблиці 1 та на рис.1 страхування обсягом 4 000 є більш привабливим порівняно з випадком коли особа взагалі не страхується.
В табл.2 та на рис.2 відображені результати аналогічних розрахунків для всіх можливих варіантів страхування з дискретністю 1 000. ,
Здійснені розрахунки показують, що діапазон від 5 000 до 10 000 містить найпривабливіший обсяг страхування для клієнта.
Закон спадаючої граничної сподіваної корисності
Рис.5. свідчить про увігнутість функції сподіваної корисності для клієнта незалежно від обсягу страхування. Цей факт можна перефразувати в термінах граничної сподіваної корисності. Дано таке означення:
Граничною сподіваною корисністю називається приріст сподіваної корисності у разі збільшення обсягу страхування на одиницю (малу).
Увігнутість функції сподіваної корисності свідчить про дію в даному випадку закону спадаючої граничної корисності. В табл.3 та на рис.6. відображена дія цього закону.
Табл.3. Гранична сподівана корисність
Обсяг страхування |
Гранична сподівана корисність |
|
0 |
0,0010 |
|
1 |
0,0010 |
|
2 |
0,0010 |
|
3 |
0,0010 |
|
4 |
0,0010 |
|
5 |
0,0010 |
|
6 |
0,0000 |
|
7 |
0,0000 |
|
8 |
0,0000 |
|
9 |
0,0000 |
|
10 |
0,0000 |
|
11 |
-0,0005 |
|
12 |
-0,0005 |
|
13 |
-0,0005 |
|
14 |
-0,0005 |
|
15 |
-0,0005 |
|
16 |
-0,0009 |
|
17 |
-0,0009 |
|
18 |
-0,0009 |
|
19 |
-0,0009 |
|
20 |
-0,0009 |
Закон спадаючої граничної сподіваної корисності розширює дію закону спадаючої граничної корисності. У випадку розглянутої схеми страхування сформульований закон означає, що кожна додаткова одиниця застрахованого активу приносить його власнику все менший приріст його сподіваної корисності.
Помічена властивість може використовуватись для раціоналізації розрахунків: як тільки гранична сподівана корисність стає відємною, розрахунки далі можна не продовжувати.
- ВСТУП
- Купівля та продаж ризику. Вступ до теорії страхування та грального бізнесу.
- Тест журналу FORTUNE
- Атом ризику, або лотерея за Нейманом-Моргенштерном.
- Ставлення до ризику: схильність, несхильність та нейтральність до ризику.
- Закон спадаючої корисності та ризик
- Прибуток страхової компанії
- Принцип обєднання ризику та акції
- Селекція за ступенем імовірності втрат
- Схильність до ризику та гральний бізнес
- Таблична модель поведінки клієнта страхової компанії
- Реакція клієнта на зміну параметрів страхування
- Математична модель клієнта
- Теорема про рівновагу
- Аналіз рівноваги
- АНАЛІЗ ТАКТИКИ СТРАХОВОЇ КОМПАНІЇ
- Прибуток страхової компанії та його корисність
- Модель страхової компанії
- Нейтральність до ризику страхової компанії
- Розрахунок реакції клієнта страхової компанії
- Оптимальна ціна страхування
- Умови прибутковості страхової компанії
- Параметричний аналіз взаємодії страхової компанії та її клієнта
- ВИСНОВОК
- Таблична модель поведінки клієнта страхової компанії
- Аналіз тактики страхової компанії
- 1.1. Теоретичні засади моделювання діяльності страхової компанії
- 20.Причини відмови страхової компанії у виплатах застрахованій особі
- 3. Прибуток страхової компанії
- Тема 9. Модель оптимізації інвестиційної діяльності страхової компанії.
- 4.1. Моделювання оптимальної стратегії страхової компанії
- 7.1. Поняття фінансової стійкості та латоспроможності страхової компанії.
- Витрати страхової компанії