logo search
Моделювання поведінки клієнта страхової компанії

Теорема про рівновагу

Теорема 1

Припустимо, клієнт - несхильний до ризику й має монотонно зростаючу та диференційовану функцію корисності. У цьому разі, якщо

то клієнт ухиляється від страхування,

якщо

то клієнт страхує весь актив;

якщо ж

то клієнт страхує частку свого активу (але не весь актив), причому для обсягу страхування, який забезпечує максимальну сподівану корисність х*, виконується:

Доведення

Оскільки клієнт несхильний до ризику, то його функція корисності увігнута. Доведення базується на властивостях увігнутих функцій.

Дійсно, з властивостей увігнутих функцій, з увігнутості функції корисності випливає увігнутість функції сподіваної корисності U(x).

Звідси, гранична сподівана корисність U(x) спадає у разі зростання обсягу страхування. Отже, максимальна гранична сподівана корисність буде спостерігатись у точці 0. За максимального обсягу страхування гранична сподівана корисність буде мінімальною. Таким чином, можна виписати співвідношення для задачі (2):

Випадок (3) та (5) ілюструє Рис 8 ((. 143), випадок (4) - Рис.9. Оскільки

то

Сполучаючи останні три співвідношення з (3), (4), (5), отримуємо доведення теореми про рівновагу.