5 Результаты
Схема 5.1
База данных состоит из 72848 записей. Ключевым заданным параметром стал “EVER_WO_12MOB”, обозначающий списание клиента в течении 12 месяцев. Обучающая база данных состояла из 28411 клиентов, 28110 которых имеют значение «0» в ключевом поле, что составляет 98, 94% процента от всех клиентов в базе данных. По алгоритму поиска ассоциативных правил было построено дерево возможных решений, внутри которого в зависимости от глубины поиска с разными уровнями поддержки были предложены наборы данных. Таким образом, по алгоритму поиска ассоциативных правил был предложен следующий набор данных при уровне поддержки 99%(клиент полностью выплачивает кредит).
Первая ключевая характеристика при списывании клиента – это способ подтверждение дохода. При оценке результатов работы алгоритма рассмотрено влияние характеристики как со стороны уменьшение количества списанных клиентов, так и стороны бизнеса: скольких денег не досчитается банк, если откажет в кредите всем клиентам с данной характеристикой.
Клиенты, подтверждающие свой доход с помощью справки 2-ндфл составляют 22,4% от кредитного портфеля. Среди 6320 клиентов, находится 30,56 % от списанных клиентов, что составляет 92 клиента.
Второй параметр - сумма доходов. При том же уровне поддержки в 99%, «плохими клиентами» являются с низким уровенем дохода, а именно ниже 35000 рублей. Суммарно данная группа составляет 7,64 % клиентов среди списавшихся и 12,04 % от портфеля, учитывая клиентов выплачивающих кредит.
Третьим по глубине фактором является категорий компании. Клиенты, работающие в небольших компаниях или на ИП чаще списывались в просрочку. Около 4% от всех списавшихся клиентов. Однако среди всего портфеля эта цифра занимает совсем маленькую долю- около 1,91%. Из этого следует, что дальнейшее погружение в дерево, не будет давать нам необходимого уровня поддержки.
На последнем шаге уровень достоверности того, что клиент спишется если приходит в банк со справкой 2-НДФЛ, его доход составляет менее 35 000 рублей, и он работает в компании категории О или В, составляет 49 %.
Наиболее высокий уровень поддержки был выявлен для следующего набора характеристик: если клиент подтверждает свой доход с помощью загранпаспорта, либо владением автомобилем, то из этого следует, что в случае когда клиенту будет присвоен уровень риска – высокий, то он спишется с уровнем поддержки 80%. Однако, во всей используемой базе данных количество таких клиентов ровно 5, что составляет 0,02 %.
Сформулируем окончательный набор данных, который говорит нам по результатам выборки о ключевых параметрах, на которые стоит обратить внимание банку при принятии решения:
Таблица 5.2 Предложенные алгоритмом наборы характеристик
{Способ подтверждения дохода, Уровень дохода, Возраст}
{2-НДФЛ, <35000, O,B}
Небольшое присутствие данной группы в кредитном портфеле, говорит о грамотно проводимой политики банка по привлечению клиентов, верной диверсификации рисков. .
Полностью отказаться банку от проблемных групп нельзя ввиду того, что прибыль, которую приносят клиенты с теми же характеристиками, превышает расходы от списаний проблемных клиентов.
Согласно исследованию, наиболее благоприятной группой являются клиенты, подтвердившие свой доход, зарплатой которой перечисляется на счет в банк, выдавший кредит. Для данной группы клиентов, которая является наименее рисковой с точки зрения банка, создана процедура автоматизации принятия решения.
С полностью построенным деревом решений можно ознакомиться в приложении.
- Министерство образования и науки Российской Федерации
- 1 Постановка задачи
- 2 Обзор источников
- 2.1 Существующие методы
- 2.1.1 Экспертные системы оценки
- 2.1.2 Балльные системы оценки кредитоспособности клиентов
- 2.1.2.1 Application-скоринг(Оценка заявки на кредит)
- 2.1.2.2 Fraud-скоринг
- 2.1.2.3 Collection-скоринг
- 2.1.2.4 Behavioral-scoring (поведенческий скоринг)
- 2.2. Проблема существующих методов
- 3 Методика решения задачи
- 3.1 Общая структура модели
- 3.2 Основные этапы анализа данных
- 4 Формулировка задачи
- 4.1 Математическая формулировка
- 4.2. Исходные данные
- 4.2 Алгоритм расчета
- 4.2.1. Алгоритм apriori
- 5 Результаты
- 6 Анализ результатов
- 6.1. Интерпретация полученных результатов
- 6.2 Основные результаты
- Заключение
- Список использованной литературы
- Приложение а.