Непрерывное наращение и дисконтирование. Непрерывные проценты
В практических финансово-кредитных операциях непрерывное наращение, т.е. наращение за бесконечно малые отрезки времени, применяется крайне редко. К таким примерам относится случай, если капитализация процентов осуществляется достаточно часто, например, ежедневно.
Существенно большее значение непрерывное наращение имеет в анализе сложных финансовых проблем, например, при обосновании и выборе инвестиционных решений, в финансовом проектировании.
При непрерывном наращении процентов применяют особый вид процентной ставки - силу роста. Сила роста характеризует относительный прирост наращенной суммы за бесконечно малый промежуток времени. Она может быть постоянной или изменяться во времени.
При дискретном начислении процентов m раз в году по номинальной ставке j наращенная сумма определяется по уравнению:
При m стремящемся к бесконечности как для любого случайного числа x существует предел
где e = 2,718281828... — основание натуральных логарифмов. Эта формула называется вторым замечательным пределом. Следовательно, именем:
Для того, чтобы отличить непрерывную ставку от дискретной, силу роста обозначают, как δ, тогда:
Дискретные и непрерывные ставки наращения находятся в функциональной зависимости между собой. Из равенства множителей наращения (1+rc)n=eδ следует:
Пример 1.
Номинальная процентная ставка по вкладу составляет 18%, но капитализация процентов осуществляется ежедневно (m = 365). Определить эффективную процентную ставку.
Решение.
Задачи для самостоятельного решения.
Задача 1. На первоначальный капитал в сумме 3000 у.е. начисляются сложные проценты – 15 годовых в течение 3 лет. Определить наращенную сумму, если проценты начисляются непрерывно.
Задача 2. Получен кредит в размере 100 млн. руб. сроком на 3 года под 8% годовых (сложные проценты). Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться:
а) один раз в год;
б) ежедневно;
в) непрерывно.
-
Содержание
- Оглавление
- Введение
- 1. Основные понятия, применяемые в финансовых расчетах
- Наращение по простым и сложным процентным ставкам
- Наращение по простой процентной ставке
- Наращение по сложной процентной ставке
- Дисконтирование и учет по простым и сложным ставкам
- Дисконтирование и учет по простым ставкам
- Дисконтирование и учет по сложным ставкам
- Номинальная и эффективная ставка
- Непрерывное наращение и дисконтирование. Непрерывные проценты
- Средние ставки процентов
- Учет инфляции при расчете наращенных сумм
- Консолидация и изменение условий платежей
- Погашение долгосрочной задолженности
- Финансовые ренты
- Оценка эффективности проектов инвестиций
- Математическое дисконтирование
- Чистый приведенный денежный поток
- Внутренняя норма рентабельности инвестиций
- Оценка стоимости инструментов рынка ценных бумаг
- Определение стоимости акции
- Определение стоимости облигации
- Фьючерсы
- Опционы
- Валютные курсы
- Приложение
- Денежные единицы стран мира
- Литература